If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-46=0
a = 1; b = -10; c = -46;
Δ = b2-4ac
Δ = -102-4·1·(-46)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{71}}{2*1}=\frac{10-2\sqrt{71}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{71}}{2*1}=\frac{10+2\sqrt{71}}{2} $
| 4u−3u=10 | | -4.6=s+3.1 | | 10n-0.23=4.6 | | 23-5x=12+6x | | (3x)-(x+14)=90 | | 6(z+8)=18 | | 14-3r=6 | | 2a-20.1=a+2.9 | | 0.83x+0.5=-9 | | 9x+32=5× | | .33x=4x+11 | | 6x+7+4x+13=11x+8 | | -6(-4+x)=-42 | | 9+2x=4+3x | | 4x-30=3(x-1) | | 12=-4.6+k | | 9+2x=4=3x | | 2x+12=-4x-4 | | -24x+144=36 | | -2x+12=6x+9 | | 10.1-5h+2.5=326 | | 3^x-4=16 | | .25=g/22+.0146 | | .06=50/x | | 3p^2-9=9 | | 3x1-5x2+4x3=7 | | 8x+9+4x+11=13x+8 | | 3(3x−6)=−63 | | r/9+8=8 | | 14=8/3x+6 | | −2(1−12x)=22 | | 24x+13=2(12x+6) |